Pentobarbital depressant effects are independent of GABA receptors in auditory thalamic neurons.
نویسندگان
چکیده
Pentobarbital, a general anesthetic, has received extensive study for its ability to potentiate inhibition at GABA(A) subtype of receptors for GABA. Using whole cell current-clamp techniques and bath applications, we determined the effects of pentobarbital and GABA receptor antagonists on the membrane properties and tonic or burst firing of medial geniculate neurons in thalamic slices. Pentobarbital (0.01-200 microM) induced depressant effects in 50 of 66 neurons (76%). Pentobarbital hyperpolarized neurons by a mean of 3 mV and decreased the number of action potentials in tonic firing, evoked by current pulse injection from near the resting potential. Pentobarbital also decreased burst firing or low threshold Ca(2+)-spikes, evoked by current pulse injection into neurons at potentials hyperpolarized from rest. The blockade of tonic and burst firing, as well as low threshold Ca(2+)-spikes, was surmountable by increasing the amplitude of input current. The GABA(A) receptor antagonists, bicuculline (100 microM) and picrotoxinin (50-100 microM), did not block the depressant effects of pentobarbital (10 microM). The GABA(B) receptor antagonist, saclofen (200 microM), and GABA(C) receptor antagonist, (1,2,3,6-tetrahydropyridine-4-yl)methylphosphinate (10-50 microM), did not significantly alter the depressant effects. Pentobarbital produced excitatory effects (0.1-50 microM) on 11 neurons (17%) but had no effects on 5 neurons (7%). The excitation consisted of approximately 3 mV depolarization, increased tonic and burst firing and the rate of rise and amplitude of low threshold Ca(2+) spikes. These effects were associated with a increase in input resistance. In contrast, the depressant effects of pentobarbital correlated to a decreased input resistance measured with hyperpolarizing current pulse injection (IC(50) = 7.8 microM). Pentobarbital reduced Na(+)-dependent rectification on depolarization and lowered the slope resistance over a wide voltage range. Tetrodotoxin eliminated both Na(+)-dependent rectification and the pentobarbital-induced decrease in membrane resistance at depolarized voltages in two-thirds of the neurons. The pentobarbital-induced decrease in membrane resistance at voltages hyperpolarized from rest was not evident during co-application with Cs(+), known to block the hyperpolarization-activated rectifiers. In summary, the pentobarbital acted at low concentrations to depress thalamocortical neurons. The depression resulted from decreased rectification on depolarization, which no longer boosted potentials over threshold, and an increased conductance that shunted spike generation. The depressant effects of pentobarbital did not involve known types of GABA receptor interactions.
منابع مشابه
The Role of Parabrachial GABAA Receptors in Pain Modulation in Rats
Background & Objective: The parabrachial nucleus is a critical link in the transmission of short latency nociceptive information to midbrain neurons. GABA(A) receptors have bidirectional roles in controlling nociception and are abundant in the parabrachial region . We examined the effects of bilateral intra parabrachial microinjection of different doses of the GABA(A) receptor agonist, muscimo...
متن کاملFacilitatory action of etomidate and pentobarbital on recurrent inhibition in rat hippocampal pyramidal neurons.
Biochemical studies have shown that the non-barbiturate anesthetic etomidate can interact in a stereoselective, barbiturate-like fashion with the GABA/benzodiazepine receptor complex, enhancing both benzodiazepine and GABA binding, but its electrophysiological effects upon the mammalian CNS are largely unknown. The present investigations were designed to characterize the electrophysiological ef...
متن کاملExtrasynaptic GABAA Receptors and Tonic Inhibition in Rat Auditory Thalamus
BACKGROUND Neural inhibition plays an important role in auditory processing and attentional gating. Extrasynaptic GABA(A) receptors (GABA(A)R), containing α(4)and δ GABA(A)R subunits, are thought to be activated by GABA spillover outside of the synapse following release resulting in a tonic inhibitory Cl(-) current which could account for up to 90% of total inhibition in visual and somatosensor...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 88 6 شماره
صفحات -
تاریخ انتشار 2002